Crea sito
apr 182011
 

Consideriamo la divisione 915 : 28

- Nel dividendo si considerano le prime due cifre a sinistra (91).
1° caso: il divisore è uguale o minore del numero formato dalle due cifre considerate, cioè è contenuto in esse (il 28 è contenuto nel 91).
- Bisogna stabilire quante volte il divisore è contenuto nel numero formato dalle due cifre.

Come orientarsi se abbiamo un caso per noi complicato.
Seguire la spiegazione riferita all’esempio 915 : 28
Poiché è più facile stabilire quante volte un numero di una sola cifra è contenuto in un altro, si considerano le decine del divisore 28 e la cifra più a sinistra delle due considerate nel dividendo cioè le decine del numero formato da quelle due cifre, le decine del 91.
Nel nostro caso: la cifra 2 del 28 e la cifra 9 di 91.

div_inizio
Il 2 nel 9 è contenuto 4 volte.
NON possiamo ancora mettere al quoziente il valore trovato.
Dobbiamo controllare prima se anche le unità sono “d’accordo”!
Per stabilire questo moltiplichiamo il valore trovato per le decine del divisore: quindi nel nostro caso eseguiamo 4 x 2 = 8.
Il prodotto, 8, è minore della decina (9) considerata nel dividendo, quindi abbiamo un resto.
Ci chiediamo: quanto manca da 8 per arrivare a 9?
il valore trovato (1) lo scriviamo in alto alla sinistra della seconda delle due cifre prese nel dividendo, nel nostro caso 1 del 91, e otteniamo 11 .

div_1
Ora ci chiediamo:
8 (unità) del divisore è contenuto 4 volte nel 11? 4 x 8 = 32
La risposta è NO, quindi non possiamo scrivere 4 al quoziente.

Proviamo un volta di meno, cioè 3.
Si ripete la moltiplicazione: 3 x 2 (3 ancora moltiplicato per le decine del divisore) = 6
e ci si chiede ancora: da 6 per arrivare a 9 quanto manca? Il valore trovato (3) lo scriviamo al posto del numero 1 precedente, a sinistra del 1 di 91, quindi otteniamo 31.
Ora eseguiamo: 3 x 8 = 24. Il 24 è contenuto nel 31 .
Possiamo scrivere 3 al quoziente

div_2
Ci chiediamo: quanto manca dal 24 per arrivare a 31?
Mancano 7 unità, si scrive 7 sotto la cifra 1 di 91.
“7″ è il RESTO dell’operazione : 91 – 3 x 28.
Nella divisione non abbreviata avremmo fatto infatti: 3 x 28 = 84
Avremmo messo 84 sotto il 91
eseguito la sottrazione 91 – 84 = 7

A questo punto “abbassiamo”, alla destra del resto 7, il 5 del dividendo.
Dobbiamo ripetere con 75 lo stesso ragionamento fatto con 91 : 28
Il 2 nel 7 sta 3 volte
3×2 = 6
per arrivare a 7 —> 1
metto 1 davanti al 5 di 75: ottengo 15
8 nel 15, 3 volte è contenuto? 3 x 8 = 24
NO
provo con 2

div_3
2 x 2 = 4
per arrivare a 7 —>3
metto 3 davanti al 5: ottengo 35
8 nel 35, 2 volte è contenuto.
Metto il 2 al quoziente.
2 x 8 =16
da 16 a 35 —>19
19 è il resto della divisione.

Potremmo fermarci oppure proseguire la divisione calcolando il quoziente con l’approssimazione al decimo.
Mettiamo la virgola al quoziente
aggiungiamo uno zero al resto

div_4

Attenzione.

La nostra divisione a questo punto presenta il 2° caso:
il divisore, 28, non è contenuto nelle prime due cifre a sinistra, del dividendo (19).
Si considerano le decine del divisore, 2, e le decine di 190, che sono 19 [9 decine + 10 decine formate dalle centinaia di 190, 1].
Si prosegue come descritto in precedenza: il 2 nel 19 sta [...], ecc…

 Leave a Reply

(required)

(required)


*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>